亚洲色图20p|蜜桃精品导航|性视频网站在线|美国zoom动物|伊人色强在线网

 

 

離心風機氣動噪聲研究方法的分析與建議

 

黃曌宇、劉秋洪、祁大同/西安交通大學流體機械研究所

摘要 : 對目前離心風機氣動噪聲的研究方法進行了分析, 總結(jié)出數(shù)值模擬及其計算方法還不完善 。提出了離心風機蝸殼簡化成一個具有硬邊界的理想殼體模型的思路來開研究風機氣動噪聲。
Analysis and Suggestion on Research Methods of Aerodynamic Noise for Centrifugal Fan
Abstract
:Analysis is carried out on research methods of aerodynamic noise for centrifugal fan. Numerical simulation is summarized, and its caculating method is not perfect. The thinking of that centrifugal fan volute simplified an ideal casing model with hard boundary is put forward in order to research fan aerodynamic noise.
關鍵詞離心式通風機 氣動噪聲 研究方法
Keywords: Centrifugal fan  Aerodynamic noise  Research method
1 引言

  離心風機的噪聲以氣動噪聲為主,在性質(zhì)上可以分為離散噪聲與寬帶噪聲。其氣動噪聲主要由氣體與葉輪葉片以及蝸殼的相互作用產(chǎn)生,并通過進、出氣通道加以傳播。蝸殼內(nèi)部的三維非穩(wěn)定流場以及殼體的特殊形狀使得對其開展研究變得困難。近年來,國內(nèi)外專家如: Lowson 、 Wan-Ho Jeon 等都針對離心風機噪聲做了很多研究,在發(fā)聲機理和聲源傳播、數(shù)值模擬、測試技術(shù)等方面都取得了不少突破,但仍有很多需要進一步改進和完善之處。本文綜合了近年來國內(nèi)外大量文獻的理論計算和試驗研究方法,同時提出了新的建議。

2 理論計算方法

2.1 點源模型

  對于風機而言,點源模型是一種十分有用的技術(shù)。這種近似的準則是,所要研究的最高頻率的波長 λ 應該遠大于聲源的物理尺寸。為滿足這個準則要求,對發(fā)射較高頻率噪聲的葉片,在應用點源模型時,可將每個相關面積或相關體積視為一個小尺寸的孤立聲源,將風機葉片用沿著葉片展長分布的孤立點源的總和來模擬。目前有人研究了自由聲場旋轉(zhuǎn)點聲源的聲學特性;Lowson 通過波動方程推導出了運動點源產(chǎn)生的聲場公式,該公式適合于葉片上的每個微元體,然后對葉片上的所有微元求積分就可以求出葉片運動產(chǎn)生的聲場。但擬定葉片微元的點源尺寸是一個難題,而且一般來說風機葉片都不是直葉片,甚至在空間有很大扭曲,用點源模型進行模擬容易產(chǎn)生較大誤差。另外,上述研究針對的是自由聲場,而離心風機必須考慮蝸殼的影響。

2.2 蝸舌的尖劈模擬

  靜止平板尾緣紊流邊界層聲發(fā)射的理論計算公式早已得出,但用于葉輪機械噪聲還需進一步改進。陸桂林考慮了葉片旋轉(zhuǎn)對聲發(fā)射的影響,并結(jié)合有關試驗資料,引入葉片幾何參數(shù)的組合關系式,推導出了一個有 個葉片的離心風機葉輪葉片尾緣紊流邊界層聲發(fā)射計算公式。這些都是在無蝸殼假定下噪聲計算公式的推導。為了模擬有蝸殼存在的情況,Wan-Ho Jeon 在葉輪附近放置一個尖劈模擬蝸舌,以它來作為產(chǎn)生離散噪聲的聲源,如圖1所示。
  通過此模型計算出流場,然后用非定常的伯努利方程計算出作用在葉片微元上所受的力, 最后利用 Lowson 導出的任意運動點源的聲場公式計算聲壓:   運用該模型進行風機噪聲的數(shù)值模擬可以得到很多有價值的數(shù)值計算結(jié)果,改變其中一些參數(shù),如葉片數(shù),葉輪旋轉(zhuǎn)速度和葉輪與尖劈之間的間隙等來重新進行計算,并加以比較可以分析葉片通過頻率噪聲的影響因素,對離心風機的降噪有指導意義,尤其是對分析離散噪聲的成因及其降噪方法有著比較重要的作用。但是它只能模擬風機的基頻噪聲,且仍沒有考慮完整蝸殼的存在。

2.3 基于寬頻噪聲的模擬
  寬頻噪聲也稱作渦流噪聲,它主要取決于對應的流場。至今尚未看到與離心風機蝸殼內(nèi)部完整流場所對應的聲場解,所以渦流噪聲很多都還是實驗研究或者理論上的定性分析。

  可以利用加速度傳感器得到蝸殼表面的振動速度分布,然后通過公式計算出蝸殼表面的聲壓,或者可以通過風機進口或出口的聲壓計算進出口輻射的聲功率,然后得到總的合成聲功率。可以看出,該計算方法可以計算蝸殼振動引起的噪聲輻射,也可以計算通過進出口管道向外傳遞的噪聲。但是在測量進出口的聲壓時,由于氣流的影響,使測量受到較大的干擾,因此測定的聲壓不一定是真實值;另外,由于蝸殼表面各點振動極不均勻,不僅是垂直于表面振動,甚至隨時間變化。測量時需要測量大量點的振動速度,工作量大,而且可靠性不高,因此該方法的應用也有局限性。

2.5 蝸殼聲電類比模型

  很早人們就提出了聲電類比方法并計算出了離心風機的聲共振頻率,并用高階模態(tài)分析方法分析了幾個具有比亥姆霍茲共振頻率更高的譜峰,用試驗手段繪出了蝸殼內(nèi)規(guī)范化的聲壓分布。后來黃其柏又在此基礎上提出了蝸殼基頻共振引起的噪聲增量數(shù)學模型,最后推導出了在共振頻率處遠場某點總噪聲聲壓級增值為:

利用此式可以對遠場某點總噪聲聲壓級增值進行預測和優(yōu)化。國內(nèi)一些實驗已經(jīng)證實了蝸殼基頻共振噪聲在小流量工況下的重要性。

2.6 聲學相似定律

  由國際標準化組織推薦的一系列確定噪聲功率的標準,同樣也適用于風機。試驗各種不同型式和尺寸的風機需要大量試驗設備和時間,而且費用昂貴。因此將相似定律應用于風機氣動噪聲,能大大降低成本。從而可以根據(jù)一種尺寸風機的試驗資料,對尺寸不同而因次相似的風機系列進行聲功率的計算。Weidemann對風機噪聲作了無因次分析,且得到了無因次參數(shù)關系式:

  因此,換算因次相似的風機噪聲頻譜時,可用上面兩個公式的任何一個,但是對于同一系列而尺寸不同的風機,常數(shù)α,β和函數(shù)F,GF,G應分別對應相等。

  聲學相似定律的應用也是需要預先知道某因次相似風機的實驗資料才能進行聲輻射計算,開展聲學設計,它也不是單純從理論上直接解決離心風機噪聲問題。

3 試驗研究方法

3.1 進出口管道試驗

  由于缺乏準確的理論數(shù)據(jù),因此很多試驗還是基于理論上的定性分析進行試驗,一般都采取帶有消聲器的進氣或出氣管道在進、出口進行噪聲測量,再對試驗結(jié)果進行頻譜分析以判斷噪聲源和傳播途徑。在試驗過程中通常都會先分別考慮軸向、徑向進口間隙、蝸殼的擴張角和擴張長度以及蝸舌與葉輪間隙、蝸舌傾斜角、蝸舌半徑和葉輪類型、葉片數(shù)目等參數(shù),分別分析這些參數(shù)對離心風機噪聲的影響 , 但是這樣進行分析和試驗的工作量太大,而且忽略了各個參數(shù)之間的相互影響 。

3.2 離心風機機殼的聲學優(yōu)化

  機殼的型線對于離心風機氣動噪聲而言是極其重要的,如何得到優(yōu)良的機殼型線是很多人都關注的問題。在目前的大多數(shù)研究中,僅是通過修改機殼蝸舌區(qū)域來降低基頻強度。 Hille-brand 等改變整個蝸舌形狀來找尋關于產(chǎn)生噪聲的最優(yōu)設計。作為一種試驗工具, Rechenberg 采用了植物與動物的生物進化原理提出了一種試驗程序。采用了P1到P10這10 個變量(在各種角向位置時蝸舌壁面離轉(zhuǎn)子軸的距離)來描述蝸舌。通過變量P1到P10的隨機變動產(chǎn)生一組 9 個后代量,9個后代量的最優(yōu)者形成故的“上代”,從這個“上代”通過變量的隨機變化再次繁殖出第2代,依次下去,便得到最佳型線。但是該試驗程序只考慮到了蝸殼自身參數(shù)的影響,而忽略了葉輪的結(jié)構(gòu)參數(shù)。

3.3 離心風機結(jié)構(gòu)的優(yōu)化試驗方法

  大量的試驗是在保證其他參數(shù)不變的前提下,只改變某一個參數(shù)進行試驗得出其優(yōu)化結(jié)構(gòu)參數(shù),從而忽略了各個參數(shù)之間的相關性,因此利用優(yōu)化試驗方法:正交回歸試驗設計方法、D —最優(yōu)回歸設計方法等就很有必要了。一些文獻中已通過不同實例計算出了風機聲壓級與一系列參數(shù)之間的回歸函數(shù)關系式,并采用了優(yōu)化方法進行了計算。其基本思想是在選擇離心風機結(jié)構(gòu)參數(shù)時,考慮到各個參數(shù)之間的相關性,在實際應用中利用優(yōu)化回歸方法,通過試驗得到一系列數(shù)據(jù)進行目標函數(shù)(噪聲值)的非線性回歸,得到一個非線性方程后進行優(yōu)化設計。例如可將聲壓級SPL針對 8 個參數(shù)進行 3 次回歸設計得出其關系式:

  然后采用逐步回歸分析法逐個引入變量,進行因子篩選。每引入一個新的變量都對前面的變量進行顯著性檢驗,保留其中對SPL影響顯著的變量,剔除對SPL影響不顯著的變量,從而可以得到一個最優(yōu)回歸方程,該方程中包含所有對SPL影響顯著的變量。這種優(yōu)化手段用較少的試驗就可以得出比較滿意的結(jié)果,但是它不能夠得到各個噪聲源對接受者的貢獻。

3.4 相干分析技術(shù)

  為了彌補上述缺陷,相干分析技術(shù)也隨 著計算機的發(fā)展而 開展了。在噪聲源的識別中,經(jīng)常遇到的情況是所感受到的噪聲系來自多個噪聲源,通過相干分析,就可以知道每個聲源各自對接受者的影響,這一技術(shù)已在國內(nèi)應用。國內(nèi)外一些文獻已利用相干分析技術(shù)分析了離心風機噪聲的噪聲源特性及其產(chǎn)生機理。其基本理論是基于將噪聲傳遞系統(tǒng)視為一個多輸入、單輸出的系統(tǒng),系統(tǒng)中各個輸入源之間互不相干,如圖 3 所示。

3.5 計算機指導試驗

  由于試驗設備繁重,工作量大,處理數(shù)據(jù)繁瑣,因此利用電腦監(jiān)控試驗和試驗數(shù)據(jù)的采集和處理是必不可少的,現(xiàn)在可以用微機進行數(shù)字化動靜態(tài)測試分析。

虛擬儀器(簡稱VI)和卡泰儀器(簡稱 CATAI)技術(shù)發(fā)展相當迅速,虛擬儀器被稱為是振動、噪聲動力學控制技術(shù)的革命。 DSP(大世普) 軟件虛擬儀器庫具有國際先進水平的大容量數(shù)據(jù)采集與信號處理軟件系統(tǒng),其功能強大 , 用途廣泛,可用于進行振動、沖擊、噪聲、信號和信息處理、計算機輔助測試 (CAT) 、模態(tài)分析、結(jié)構(gòu)動力學修改、故障診斷與樁基檢測、環(huán)境振動與噪聲測試等諸多分析測試工作。只是到目前為止,虛擬儀器在風機行業(yè)中應用還很少,如果能廣泛應用,將會使離心風機的試驗測試、數(shù)據(jù)采集與分析進入一個全新的階段。
4 討論
  (1)對于離心風機氣動噪聲而言,數(shù)值模擬及其計算方法還不成熟,不能得出計算離心風機氣動噪聲的理論公式,有的即使得到了聲壓與各參數(shù)之間聯(lián)系,還需要借助試驗來確定具體關系式, 顯然這些方法只限于對已有風機進行計算,而不能在對新風機進行氣動設計 的 同時進行聲學設計。 因此考慮蝸殼的離心風機的噪聲模擬及計算是需要解決的問題。因此,我們的建議是:可以把離心風機蝸殼簡化成一個具有硬邊界的理想殼體模型,如圖4所示。并暫時忽略進出口軟邊界的影響,推導出殼體內(nèi)的格林函數(shù),而后將此格林函數(shù)推廣到考慮進出口軟邊界的情況,然后利用該函數(shù)對離心風機內(nèi)部由旋轉(zhuǎn)葉輪產(chǎn)生的氣動聲場進行時 域求解便可以得到理論解方程。在計算出離心風機內(nèi)部的三維非穩(wěn)定流場之后,利用該模型和理論解方程就可求出與流場相對應的氣動聲場,這樣就可以彌補其他計算模擬方法的不足,正在進行這方面的理論和計算工作 , 同時也為同行們進行離心風機氣動噪聲計算提供參考。目前,已經(jīng)得到了忽略進出口軟邊界的蝸殼體內(nèi)的格林函數(shù):
  但是由于忽略了蝸殼進出口軟邊界的影響,這個公式與實際情況還有較大差距,因此還有必要對此進行深入研究,以得到有進出口軟邊界時蝸殼內(nèi)部的格林函數(shù)并進行時域求解。

  (2) 隨著計算機的飛速發(fā)展,噪聲試驗測試技術(shù)發(fā)展比較迅速,一些先進的試驗手段已經(jīng)應用于風機上,但還是不夠;在其他行業(yè),虛擬儀器的使用和仿真試驗已大大減少了人力、物力,使得很多難以進行的試驗變得容易開展,建議應使這些先進的試驗手段應盡快應用于風機氣動噪聲行業(yè)并不斷開發(fā)拓展其應用范圍。

 

©版權(quán)所有2006,www.dsqlvip.com 保留所有權(quán)利,未經(jīng)許可不得復制